Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.538
Filtrar
1.
Aging (Albany NY) ; 16(8): 7153-7173, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38643459

RESUMEN

Application of retinol (Vitamin A, VA) in skincare is limited for instability, poor water solubility, and skin intolerance that combats skin aging. We employed computer-aided virtual screening and cell experiments with transcriptomics, thereby unveiling the comprehensive gene expression and regulation pathway of photoaging HaCaT cell treated with ferulic acid (FA) in synergizing with VA. Through network pharmacology analysis, the combined use of VA and FA exhibited highly correlated cross-targets with skin aging acting on EGFR, PTPN1, ESR2, GSK3B, BACE1, PYGL, PTGS2 and APP. The indicators of oxidative stress, such as SOD, GSH, MDA, CAT and ROS in HaCaT cells after co-administration, were significantly improved from those in photoaging group (p<0.0001). 155 differential expressed genes (DEGs) were specific between groups, while reducing the expression of PTGS2 was identified as an important regulatory factor in photoaging HaCaT cells by VA and FA. Those DEGs of co-administration group focused on oxidative-reduction enzyme activity, skin growth, keratinization, and steroid biosynthesis. Apparently, the co-administration of VA and FA effectively mitigated the process of UVB-induced photoaging by reducing oxidative stress injury, inflammation responses, and regulating cell growth. This synergistic approach significantly slowed down the photoaging progression and improved the applied performance of VA in HaCaT cells.


Asunto(s)
Ácidos Cumáricos , Sinergismo Farmacológico , Células HaCaT , Estrés Oxidativo , Envejecimiento de la Piel , Rayos Ultravioleta , Vitamina A , Humanos , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Ácidos Cumáricos/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Vitamina A/farmacología , Queratinocitos/efectos de los fármacos , Queratinocitos/efectos de la radiación , Queratinocitos/metabolismo , Antioxidantes/farmacología
2.
Plant Physiol Biochem ; 210: 108612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598867

RESUMEN

Biosynthesis of Amaryllidaceae alkaloids (AA) starts with the condensation of tyramine with 3,4-dihydroxybenzaldehyde. The latter derives from the phenylpropanoid pathway that involves modifications of trans-cinnamic acid, p-coumaric acid, caffeic acid, and possibly 4-hydroxybenzaldehyde, all potentially catalyzed by hydroxylase enzymes. Leveraging bioinformatics, molecular biology techniques, and cell biology tools, this research identifies and characterizes key enzymes from the phenylpropanoid pathway in Leucojum aestivum. Notably, we focused our work on trans-cinnamate 4-hydroxylase (LaeC4H) and p-coumaroyl shikimate/quinate 3'-hydroxylase (LaeC3'H), two key cytochrome P450 enzymes, and on the ascorbate peroxidase/4-coumarate 3-hydroxylase (LaeAPX/C3H). Although LaeAPX/C3H consumed p-coumaric acid, it did not result in the production of caffeic acid. Yeasts expressing LaeC4H converted trans-cinnamate to p-coumaric acid, whereas LaeC3'H catalyzed specifically the 3-hydroxylation of p-coumaroyl shikimate, rather than of free p-coumaric acid or 4-hydroxybenzaldehyde. In vivo assays conducted in planta in this study provided further evidence for the contribution of these enzymes to the phenylpropanoid pathway. Both enzymes demonstrated typical endoplasmic reticulum membrane localization in Nicotiana benthamiana adding spatial context to their functions. Tissue-specific gene expression analysis revealed roots as hotspots for phenylpropanoid-related transcripts and bulbs as hubs for AA biosynthetic genes, aligning with the highest AAs concentration. This investigation adds valuable insights into the phenylpropanoid pathway within Amaryllidaceae, laying the foundation for the development of sustainable production platforms for AAs and other bioactive compounds with diverse applications.


Asunto(s)
Alcaloides de Amaryllidaceae , Proteínas de Plantas , Transcinamato 4-Monooxigenasa , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transcinamato 4-Monooxigenasa/metabolismo , Transcinamato 4-Monooxigenasa/genética , Alcaloides de Amaryllidaceae/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Ácidos Cumáricos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Biol Macromol ; 267(Pt 1): 131472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599437

RESUMEN

Lignin nanoparticles (LNPs) have gained significant attention for their potential as natural antioxidants. This study investigated the effect of various pretreatment methods on the lignin structure and subsequent antioxidant activity of LNPs. Among four pretreated LNPs, hydrothermal LNPs exhibited the highest antioxidant activity, surpassing unpretreated, acid-pretreated and kraft LNPs, with an impressive efficacy of 91.6%. The relationship between LNPs' structure and antioxidant activity was revealed by 2D heteronuclear singular quantum correlation (1H13C HSQC) and 31P nuclear magnetic resonance (NMR). 1H13C HSQC suggested the cleavage of ß-O-4 ether bonds, as well as a decrease in ferulic acid and p-coumaric acid, which directly influenced the antioxidant activity of LNPs. 31P NMR demonstrated a positive correlation between the total hydroxyl group content and the antioxidant activity. Besides, an isothermal kinetic model for scavenging free radicals was established based on Langmuir kinetic model instead of Freundlich model. Moreover, multilayer LNPs, based on layer-by-layer self-assembly, were prepared and exhibited remarkable antioxidant activity of 95.8%. More importantly, when blended with pure cosmetic cream, the multilayer LNPs maintained antioxidant activity of 86.7%. These finding may promote the practical applications of biomolecules, e.g. lignin additives in cosmetics and pharmaceuticals.


Asunto(s)
Antioxidantes , Lignina , Nanopartículas , Lignina/química , Nanopartículas/química , Antioxidantes/química , Antioxidantes/farmacología , Ácidos Cumáricos/química , Cinética , Depuradores de Radicales Libres/química , Propionatos/química
4.
Food Funct ; 15(9): 4954-4969, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38602356

RESUMEN

Overdose of Acetaminophen (APAP) is a major contributor to acute liver injury (ALI), a complex pathological process with limited effective treatments. Emerging evidence links lipid peroxidation to APAP-induced ALI. Cynarin (Cyn), a hydroxycinnamic acid derivative, exhibits liver protective effects, but whether it mitigates APAP-induced ALI is unclear. Our aim was to verify the protective impact of Cyn on APAP-induced ALI and elucidate the molecular mechanisms governing this process. Herein, the regulation of the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) interaction was determined to be a novel mechanism underlying this protective impact of Cyn against APAP-induced ALI. Nrf2 deficiency increased the severity of APAP-induced ALI and lipid peroxidation and counteracted the protective effect of Cyn against this pathology. Additionally, Cyn promoted the dissociation of Nrf2 from Keap1, enhancing the nuclear translocation of Nrf2 and the transcription of downstream antioxidant proteins, thereby inhibiting lipid peroxidation. Molecular docking demonstrated that Cyn bound competitively to Keap1, and overexpression of Keap1 reversed Nrf2-activated anti-lipid peroxidation. Additionally, Cyn activated the adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)3 signaling pathway, which exhibits a protective effect on APAP-induced ALI. These findings propose that Cyn alleviates APAP-induced ALI by enhancing the Keap1/Nrf2-mediated lipid peroxidation defense via activation of the AMPK/SIRT3 signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Proteína 1 Asociada A ECH Tipo Kelch , Peroxidación de Lípido , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Acetaminofén/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Peroxidación de Lípido/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Sirtuina 3/metabolismo , Sirtuina 3/genética , Ratones Endogámicos C57BL , Humanos , Ácidos Cumáricos/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos
5.
Arch Microbiol ; 206(5): 223, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642150

RESUMEN

Probiotics are defined as "live microorganisms that provide health benefits to the host when administered in adequate amounts." Probiotics have beneficial effects on human health, including antibacterial activity against intestinal pathogens, regulation of blood cholesterol levels, reduction of colitis and inflammation incidence, regulation of the immune system, and prevention of colon cancer. In addition to probiotic bacteria, some phenolic compounds found in foods we consume (both food and beverages) have positive effects on human health. p-coumaric acid (p-CA) is one of the most abundant phenolic compounds in nature and human diet. The interactions between these two different food components (phenolics and probiotics), resulting in more beneficial combinations called synbiotics, are not well understood in terms of how they will affect the gut microbiota by promoting the probiotic properties and growth of probiotic bacteria. Thus, this study aimed to investigate synbiotic relationship between p-CA and Lactobacillus acidophilus LA-5 (LA-5), Lacticaseibacillus rhamnosus GG (LGG). Probiotic bacteria were grown in the presence of p-CA at different concentrations, and the effects of p-CA on probiotic properties, as well as its in vitro effects on AChE and BChE activities, were investigated. Additionally, Surface analysis was conducted using FTIR. The results showed that treatment with p-CA at different concentrations did not exhibit any inhibitory effect on the growth kinetics of LA-5 and LGG probiotic bacteria. Additionally, both probiotic bacteria demonstrated high levels of antibacterial properties. It showed that it increased the auto-aggregation of both probiotics. While p-CA increased co-aggregation of LA-5 and LGG against Escherichia coli, it decreased co-aggregation against Staphylococcus aureus. Probiotics grown with p-CA were more resistant to pepsin. While p-CA increased the resistance of LA-5 to bile salt, it decreased the resistance of LGG. The combinations of bacteria and p-CA efficiently suppressed AChE and BChE with inhibition (%) 11.04-68.43 and 13.20-65.72, respectively. Furthermore, surface analysis was conducted using FTIR to investigate the interaction of p-coumaric acid with LA-5 and LGG, and changes in cell components on the bacterial surface were analyzed. The results, recorded in range of 4000 -600 cm-1 with resolution of 4 cm-1, demonstrated that p-CA significantly affected only the phosphate/CH ratio for both bacteria. These results indicate the addition of p-CA to the probiotic growth may enhance the probiotic properties of bacteria.


Asunto(s)
Ácidos Cumáricos , Lacticaseibacillus rhamnosus , Probióticos , Humanos , Lactobacillus acidophilus , Probióticos/farmacología , Antibacterianos/farmacología
6.
J Agric Food Chem ; 72(17): 9807-9817, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602350

RESUMEN

Ferulic acid (FA), predominantly existing in most cereals, can modulate the gut microbiome, but the influences of its metabolites on the microbial population and FA-transforming microorganisms are still unclear. In this study, FA and its potential phenolic metabolites were fermented in vitro for 24 h with the human fecal inoculum. A comparable short chain fatty acid (SCFA) production trend was observed in the presence and absence of substrates, suggesting limited contribution of FA mechanism to SCFA formation. Dihydroferulic acid, 3-(3,4-dihydroxyphenyl)propionic acid, and 3-(3-hydroxyphenyl)propionic acid were ascertained to be successive metabolites of FA, by tracking the intermediate variation. FA remarkably promoted the absolute abundances of total bacteria, while different metabolites affected bacterial growth of selective genera. Specific genera were identified as quantitatively correlating to the content of FA and its metabolites. Ultimately, FA-mediated gut microbiota modulation involves both the action of metabolizing microbes and the regulation effects of metabolites on bacterial growth.


Asunto(s)
Bacterias , Ácidos Cumáricos , Ácidos Grasos Volátiles , Heces , Fermentación , Microbioma Gastrointestinal , Ácidos Cumáricos/metabolismo , Humanos , Heces/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Ácidos Grasos Volátiles/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612494

RESUMEN

Climate change causes shifts in temperature patterns, and plants adapt their chemical content in order to survive. We compared the effect of low (LT) and high (HT) growing temperatures on the phytochemical content of broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) microgreens and the bioactivity of their extracts. Using different spectrophotometric, LC-MS/MS, GC-MS, and statistical methods, we found that LT increased the total phenolics and tannins in broccoli. The total glucosinolates were also increased by LT; however, they were decreased by HT. Soluble sugars, known osmoprotectants, were increased by both types of stress, considerably more by HT than LT, suggesting that HT causes a more intense osmotic imbalance. Both temperatures were detrimental for chlorophyll, with HT being more impactful than LT. HT increased hormone indole-3-acetic acid, implying an important role in broccoli's defense. Ferulic and sinapic acid showed a trade-off scheme: HT increased ferulic while LT increased sinapic acid. Both stresses decreased the potential of broccoli to act against H2O2 damage in mouse embryonal fibroblasts (MEF), human keratinocytes, and liver cancer cells. Among the tested cell types treated by H2O2, the most significant reduction in ROS (36.61%) was recorded in MEF cells treated with RT extracts. The potential of broccoli extracts to inhibit α-amylase increased following both temperature stresses; however, the inhibition of pancreatic lipase was increased by LT only. From the perspective of nutritional value, and based on the obtained results, we conclude that LT conditions result in more nutritious broccoli microgreens than HT.


Asunto(s)
Brassica , Ácidos Cumáricos , Humanos , Animales , Ratones , Temperatura , Cromatografía Liquida , Peróxido de Hidrógeno , Espectrometría de Masas en Tándem
8.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1240-1248, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621970

RESUMEN

Tianwang Buxin Pills have demonstrated therapeutic effects in clinical practice, whereas there is a serious lack of comprehensive quality control to ensure the safety and effectiveness of clinical medication. In this study, ultra-performance liquid chromatography(UPLC) was employed to establish the fingerprint and the method for simultaneously determining the content of seven components of Tianwang Buxin Pills. Furthermore, chemometrics was employed to identify the key factors for the stable quality, which provided a reference for the comprehensive quality control and evaluation of this preparation. There were 25 common peaks in the UPLC fingerprints of 15 batches of Tianwang Buxin Pills, from which thirteen compounds were identified. A quantitation method was established for seven pharmacological components(α-linolenic acid, salvianolic acid B, glycyrrhetinic acid, schisandrin A, ß-asarone, 3,6'-disinapoylsucrose, and ligustilide). The principal component analysis(PCA) and partial least square discriminate analysis(PLS-DA) were performed to determine the key pharmacological components for controlling the quality stability of Tianwang Buxin Pills, which included 3,6'-disinapoylsucrose, α-linolenic acid, and ß-asarone. The established fingerprint and multi-component content determination method have strong specificity, stability, and reliability. In addition, 3,6'-disinapoylsucrose, α-linolenic acid, and ß-asarone are the key pharmacological components that ensure the quality stability between batches and can be used to comprehensively control the quality of Tianwang Buxin Pills. The findings provide a scientific basis for the quality evaluation and standard establishment of Tianwang Buxin Pills.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Ácidos Cumáricos , Medicamentos Herbarios Chinos , Sacarosa/análogos & derivados , Medicamentos Herbarios Chinos/farmacología , Cromatografía Líquida de Alta Presión , Reproducibilidad de los Resultados , Ácido alfa-Linolénico , Control de Calidad
9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1378-1387, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621986

RESUMEN

This paper aims to study the pharmacokinetic differences of twelve effective constituents(succinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, protocatechuic aldehyde, caffeic acid, 5-O-ferulogeninic acid, p-coumaric acid, nuciferine, quercetin, oleanolic acid, and ursolic acid) in Qihe Fenqing Yin in normal and diabetic rats. The diabetic rat model was established by a high-fat diet combined with intraperitoneal injection of streptozocin. A UHPLC-QTRAP-MS/MS method was established for the simultaneous determination of 12 constituents in the plasma of normal rats and model rats after a single intragastric administration of Qihe Fenqing Yin. The results show that the established analytical method has a good linear relationship with the 12 components, and the specificity, accuracy, precision, and stability meet the requirements. The computational pharmacokinetic parameters are fitted by DAS 3.2.8 software, and the results show that the half-life time(t_(1/2)) of the other nine components in the model group was longer than that in the normal group except for caffeic acid, 5-O-ferulogeninic acid, and oleanolic acid. The area under curve(AUC_(0-t)) of cryptochlorogenic acid, p-coumaric acid, ursolic acid, and oleanolic acid increases compared with the normal group. Meanwhile, mean residence time(MRT) delays. The "double peaks" of quercetin and nuciferine in the normal group are not observed in the model group, suggesting that the pharmacokinetic parameters of the drugs in the disease state are significantly different.


Asunto(s)
Ácidos Cafeicos , Ácidos Cumáricos , Diabetes Mellitus Experimental , Medicamentos Herbarios Chinos , Ácido Oleanólico , Ratas , Animales , Ratas Sprague-Dawley , Quercetina , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Medicamentos Herbarios Chinos/farmacocinética
10.
J Agric Food Chem ; 72(14): 7870-7881, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38562057

RESUMEN

This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition.


Asunto(s)
Citrus sinensis , Ácidos Cumáricos , Microbioma Gastrointestinal , Putrescina/análogos & derivados , Citrus sinensis/metabolismo , Metilaminas/metabolismo
11.
Fungal Biol ; 128(2): 1684-1690, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575241

RESUMEN

This study aimed to investigate the effects of ferulic acid (FA), a natural phenolic phytochemical, in combination with light irradiation at three wavelengths (365, 385 and 405 nm) on the concentration and toxicity of deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum. Moreover, this study examined the influence of the combination treatment on DON production in the cultured fungus. FA activated by light at a peak wavelength of 365 nm exhibited the most effective decrease in DON concentration of the tested wavelengths; a residual DON ratio of 0.23 at 24 h exposure was observed, compared with the initial concentration. The reduction in DON using 365-nm light was dependent on the concentration of FA, with a good correlation (r2 = 0.979) between the rate constants of DON decrease and FA concentration, which was confirmed by a pseudo-first-order kinetics analysis of the photoreaction with different FA concentrations (50-400 mg/L) for 3 h. The viability of HepG2 cells increased by 56.7% following in vitro treatment with a mixture containing the photoproducts obtained after treatment with 20 mg/L DON and 200 mg/L FA under 365-nm irradiation for 6 h. These results suggested that the photoreaction of FA under 365-nm irradiation induces the detoxification of DON through degradation or modification of DON. The antifungal effects of the combination (FA and 365-nm light) on F. graminearum were investigated. Conidia treated with the combination did not show additive or synergistic inhibition of fungal biomass and DON production in 7-day cultivated fungal samples compared with samples after single treatment. However, successive treatment, composed of 90 min irradiation at 365 nm and then treatment with 200 mg/L FA for 90 min in the dark, suppressed fungal growth and DON yield to 70% and 25% of the untreated sample level, respectively. This photo-technology involving the two treatment methods of 365-nm irradiation and FA addition as a food-grade phenolic acid in combination or successively, can aid in developing alternative approaches to eliminate fungal contaminants in the fields of environmental water and agriculture. However, further research is required to explore the underlying mechanisms of DON decontamination and its biosynthesis in F. graminearum.


Asunto(s)
Ácidos Cumáricos , Fusarium , Micotoxinas , Tricotecenos , Tricotecenos/metabolismo , Micotoxinas/metabolismo , Enfermedades de las Plantas/microbiología
12.
J Ethnopharmacol ; 330: 118230, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38643862

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ferulic acid (FA) has shown potential therapeutic applications in treating lung diseases. However, the underlying mechanisms by which FA ameliorates acute lung injury (ALI) have not been distinctly elucidated. AIM OF THE STUDY: The project aims to observe the therapeutic effects of FA on lipopolysaccharide-induced ALI and to elucidate its specific mechanisms in regulating epithelial sodium channel (ENaC), which majors in alveolar fluid clearance during ALI. MATERIALS AND METHODS: In this study, the possible pathways of FA were determined through network pharmacology analyses. The mechanisms of FA in ALI were verified by in vivo mouse model and in vitro studies, including primary alveolar epithelial type 2 cells and three-dimensional alveolar organoid models. RESULTS: FA ameliorated ALI by improving lung pathological changes, reducing pulmonary edema, and upregulating the α/γ-ENaC expression in C57BL/J male mice. Simultaneously, FA was observed to augment ENaC levels in both three-dimensional alveolar organoid and alveolar epithelial type 2 cells models. Network pharmacology techniques and experimental data from inhibition or knockdown of IkappaB kinase ß (IKKß) proved that FA reduced the phosphorylation of IKKß/nuclear factor-kappaB (NF-κB) and eliminated the lipopolysaccharide-inhibited expression of ENaC, which could be regulated by nuclear protein NF-κB p65 directly. CONCLUSIONS: FA could enhance the expression of ENaC at least in part by inhibiting the IKKß/NF-κB signaling pathway, which may potentially pave the way for promising treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ácidos Cumáricos , Canales Epiteliales de Sodio , Lipopolisacáridos , Ratones Endogámicos C57BL , Farmacología en Red , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Ácidos Cumáricos/farmacología , Masculino , Canales Epiteliales de Sodio/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Sodio/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo
13.
Mol Pharm ; 21(5): 2577-2589, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38647021

RESUMEN

This study aimed to repurpose the antifungal drug flucytosine (FCN) for anticancer activity together with cocrystals of nutraceutical coformers sinapic acid (SNP) and syringic acid (SYA). The cocrystal screening experiments with SNP resulted in three cocrystal hydrate forms in which two are polymorphs, namely, FCN-SNP F-I and FCN-SNP F-II, and the third one with different stoichiometry in the asymmetric unit (1:2:1 ratio of FCN:SNP:H2O, FCN-SNP F-III). Cocrystallization with SYA resulted in two hydrated cocrystal polymorphs, namely, FCN-SYA F-I and FCN-SYA F-II. All the cocrystal polymorphs were obtained concomitantly during the slow evaporation method, and one of the polymorphs of each system was produced in bulk by the slurry method. The interaction energy and lattice energies of all cocrystal polymorphs were established using solid-state DFT calculations, and the outcomes correlated with the experimental results. Further, the in vitro cytotoxic activity of the cocrystals was determined against DU145 prostate cancer and the results showed that the FCN-based cocrystals (FCN-SNP F-III and FCN-SYA F-I) have excellent growth inhibitory activity at lower concentrations compared with parent FCN molecules. The prepared cocrystals induce apoptosis by generating oxidative stress and causing nuclear damage in prostate cancer cells. The Western blot analysis also depicted that the cocrystals downregulate the inflammatory markers such as NLRP3 and caspase-1 and upregulate the intrinsic apoptosis signaling pathway marker proteins, such as Bax, p53, and caspase-3. These findings suggest that the antifungal drug FCN can be repurposed for anticancer activity.


Asunto(s)
Antifúngicos , Antineoplásicos , Apoptosis , Reposicionamiento de Medicamentos , Flucitosina , Neoplasias de la Próstata , Transducción de Señal , Apoptosis/efectos de los fármacos , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Antifúngicos/farmacología , Antifúngicos/química , Masculino , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Reposicionamiento de Medicamentos/métodos , Flucitosina/farmacología , Flucitosina/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Ácido Gálico/química , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Cristalización , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
14.
Int J Biol Macromol ; 266(Pt 2): 131279, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561115

RESUMEN

The influence of ferulic acid (FA) on rice starch was investigated by incorporating it at various concentrations (0, 2.5, 5, 7.5, and 10 %, w/w, on dry starch basis) and subjecting the resulting composites to hot-extrusion 3D printing (HE-3DP) process. This study examined the effects of FA addition and HE-3DP on the structural, rheological, and physicochemical properties as well as the printability and digestibility of rice starch. The results indicated that adding 0-5 % FA had no significant effect; however, as the amount of FA increased, the printed product edges became less defined, the product's overall stability decreased, and it collapsed. The addition of FA reduced the elasticity and viscosity, making it easier to extrude the composite gel from the nozzle. Moreover, the crystallinity and short-range ordered structure of the HE-3D printed rice starch gel decreased with the addition of FA, resulting in a decrease in the yield stress and an increase in fluidity. Furthermore, the addition of FA reduced the digestibility of the HE-3D-printed rice starch. The findings of this study may be useful for the development of healthier modified starch products by adding bioactive substances and employing the 3D printing technology.


Asunto(s)
Ácidos Cumáricos , Oryza , Impresión Tridimensional , Reología , Almidón , Almidón/química , Oryza/química , Ácidos Cumáricos/química , Viscosidad , Calor , Digestión/efectos de los fármacos
15.
Int J Biol Macromol ; 266(Pt 2): 131249, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569998

RESUMEN

This study investigated the development of biodegradable films made from a combination of polyethylene glycol (PEG), carboxymethyl cellulose (CMC) and mixtures from natamycin and ferulic acid. The films were characterized for their surface microstructure, antioxidant activity, thermal stability, mechanical properties, permeability and antifungal/bacterial activity. The addition of natamycin and ferulic acid to the film matrix enhanced antioxidant activity, thermal stability, antimicrobial activity, reduced the water vapor permeability (WVP) to 1.083 × 10-10 g × m-1s-1Pa-1, imparted opaque color and increased opacity up to 3.131 A mm-1. The attendance of natamycin and ferulic acid inside films created a clear roughness shape with agglomerates on the surface of films and caused a clear inhibition zone for Aspergillus niger, E. coli and C. botulinum. The utilization of PG/CMC/N-F packaging material on Ras cheese had a noticeable effect, resulting in a slight decrease in moisture content from 34.23 to 29.17 %. Additionally, it helped maintain the titrable acidity within the range of 0.99 % to 1.11 % and the force required for puncture from 0.035 to 0.052 N with non-significant differences. Importantly, these changes did not significantly affect the sensory qualities of Ras cheese during the storage period.


Asunto(s)
Antioxidantes , Carboximetilcelulosa de Sodio , Ácidos Cumáricos , Embalaje de Alimentos , Natamicina , Polietilenglicoles , Antioxidantes/farmacología , Antioxidantes/química , Polietilenglicoles/química , Embalaje de Alimentos/métodos , Carboximetilcelulosa de Sodio/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Natamicina/farmacología , Natamicina/química , Permeabilidad , Disponibilidad Biológica , Antiinfecciosos/farmacología , Antiinfecciosos/química , Queso , Vapor
16.
Food Chem ; 449: 139189, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593726

RESUMEN

Non-enzymatic conversion of phenolic compounds plays an important role during thermal processing of plant-based food such as coffee, cocoa, and peanuts. However, the more prominent Maillard reaction is mainly studied at a mechanistic level for carbohydrates and amino compounds to clarify reactions that contribute to ('classic') melanoidin formation, but the role of phenolic compounds in such reactions is rarely discussed yet. To understand their contribution to non-enzymatic browning, reactions between ubiquitous phenolic acids, such as caffeic acid and ferulic acid, and prominent heterocyclic Maillard intermediates, namely furfural, hydroxymethylfurfural, and pyrrole-2-carbaldehyde were investigated. Following incubation under roasting conditions (220 °C, 0-30 min), heterogenous products were characterized by high-resolution mass spectrometry, and, after isolation, by nuclear magnetic resonance spectroscopy. By this, color precursors were identified, and it was shown that in addition to aromatic electrophilic substitution, nucleophilic and condensation reactions are key mechanisms contributing to the formation of phenol-containing melanoidins.


Asunto(s)
Ácidos Cumáricos , Reacción de Maillard , Fenoles , Ácidos Cumáricos/química , Fenoles/química , Calor , Polímeros/química , Colorantes/química
17.
Chem Biodivers ; 21(5): e202400491, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38470945

RESUMEN

We have evaluated eight p-coumaric acid prenylated derivatives in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and their antischistosomal activity against Schistosoma mansoni adult worms. Compound 7 ((E)-3,4-diprenyl-4-isoprenyloxycinnamic alcohol) was the most active against L. amazonensis (IC50=45.92 µM) and S. mansoni (IC50=64.25 µM). Data indicated that the number of prenyl groups, the presence of hydroxyl at C9, and a single bond between C7 and C8 are important structural features for the antileishmanial activity of p-coumaric acid prenylated derivatives.


Asunto(s)
Antiprotozoarios , Ácidos Cumáricos , Leishmania , Pruebas de Sensibilidad Parasitaria , Schistosoma mansoni , Animales , Schistosoma mansoni/efectos de los fármacos , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/química , Leishmania/efectos de los fármacos , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Relación Estructura-Actividad , Prenilación , Propionatos/farmacología , Propionatos/química , Estructura Molecular , Esquistosomicidas/farmacología , Esquistosomicidas/química , Esquistosomicidas/síntesis química , Relación Dosis-Respuesta a Droga
18.
Expert Opin Drug Deliv ; 21(3): 479-493, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486470

RESUMEN

INTRODUCTION: Ferulic acid (FA) is a phenolic phytochemical that has garnered the attention of the research community due to its abundant availability in nature. It is a compound that has been explored for its multifaceted therapeutic potential and benefits in modern and contemporary healthcare. AREAS COVERED: This review furnishes a compilation of the molecular mechanisms underlying the anti-diabetic, anticancer, antioxidant, and anti-inflammatory effects of FA. We also aim to excavate an in-depth analysis of the role of nanoformulations to achieve release control, reduce toxicity, and deliver FA at specified target sites. To corroborate the safety and efficacy of FA, a multitude of pre-clinical studies have also been conducted by researchers and have been discussed comprehensively in this review. The various patented innovations and newer paradigms pertaining to FA have also been presented. EXPERT OPINION: Enormous research has been conducted and should still be continued to find the best possible novel drug delivery system for FA delivery. The utilization of nanocarriers and nanoformulations has intrigued the scientists for delivery of FA, but before that, it is necessary to shed light upon toxicity, safety, and regulatory concerns of FA.


Asunto(s)
Ácidos Cumáricos , Sistemas de Liberación de Medicamentos , Nanopartículas , Patentes como Asunto , Ácidos Cumáricos/uso terapéutico , Ácidos Cumáricos/administración & dosificación , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/química , Humanos , Animales , Portadores de Fármacos/química
19.
Enzyme Microb Technol ; 176: 110423, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442476

RESUMEN

Phenylalanine ammonia-lyase (PAL) plays a pivotal role in the biosynthesis of phenylalanine. PAL from Zea mays (ZmPAL2) exhibits a bi-function of direct deamination of L-phenylalanine (L-Phe) or L-tyrosine(-L-Tyr) to form trans-cinnamic acid or p-coumaric acid. trans-Cinnamic acid and p-coumaric acid are mainly used in flavors and fragrances, food additives, pharmaceutical and other fields. Here, the Activity of ZmPAL2 toward L-Phe or L-Tyr was improved by using semi-rational and rational designs. The catalytic efficiency (kcat/Km) of mutant PT10 (V258I/I459V/Q484N) against L-Phe was 30.8 µM-1 s-1, a 4.5-fold increase compared to the parent, and the catalytic efficiency of mutant PA1 (F135H/I459L) to L-tyrosine exhibited 8.6 µM-1 s-1, which was 1.6-fold of the parent. The yield of trans-cinnamic acid in PT10 reached 30.75 g/L with a conversion rate of 98%. Meanwhile, PA1 converted L-Tyr to yield 3.12 g/L of p-coumaric acid with a conversion rate of 95%. Suggesting these two engineered ZmPAL2 to be valuable biocatalysts for the synthesis of trans-cinnamic acid and p-coumaric acid. In addition, MD simulations revealed that the underlying mechanisms of the increased catalytic efficiency of both mutant PT10 and PA1 are attributed to the substrate remaining stable within the pocket and closer to the catalytically active site. This also provides a new perspective on engineered PAL.


Asunto(s)
Cinamatos , Ácidos Cumáricos , Fenilanina Amoníaco-Liasa , Zea mays , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/química , Fenilalanina , Tirosina
20.
ACS Synth Biol ; 13(4): 1312-1322, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38545878

RESUMEN

Industrial biotechnology uses Design-Build-Test-Learn (DBTL) cycles to accelerate the development of microbial cell factories, required for the transition to a biobased economy. To use them effectively, appropriate connections between the phases of the cycle are crucial. Using p-coumaric acid (pCA) production in Saccharomyces cerevisiae as a case study, we propose the use of one-pot library generation, random screening, targeted sequencing, and machine learning (ML) as links during DBTL cycles. We showed that the robustness and flexibility of the ML models strongly enable pathway optimization and propose feature importance and Shapley additive explanation values as a guide to expand the design space of original libraries. This approach allowed a 68% increased production of pCA within two DBTL cycles, leading to a 0.52 g/L titer and a 0.03 g/g yield on glucose.


Asunto(s)
Ácidos Cumáricos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ácidos Cumáricos/metabolismo , Aprendizaje Automático , Ingeniería Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA